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@ Investors trading in a multi-period and discrete-time financial market.

@ Analyse from scratch the set of super-hedging prices and its infimum
value.

@ Use the convex duality instead of the usual financial duality based on
martingale measures under the (NA) condition.

@ Study the link between Absence of Immediate Profit (AIP), (NA)
and the absence of weak immediate profit (AWIP) conditions.

@ Give some numerical illustrations : calibrate historical data of the
french index CAC 40 to our model and implement the super-hedging
strategy for a call option.
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Framework and notations

o Let (Q, (Ft)teqo,..., 7y, Fr, P) be a complete filtered probability
space, where T is the time horizon.

o Let §:={S;, t€{0,...,T}} be a (F;)eqo,..., 7y-adapted,
real-valued, non-negative process.

o Trading strategies are given by (F;):cqo,...,r}-adapted processes
0 .= {Qt,t c {0,,T— 1}}

e Trading is self-financing and the riskless asset’s price is a constant
equal to 1. The value at time t of a portfolio # starting from initial
capital z € R is then given by

t
Vil =a24+) 0,148,

u=1
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Framework and notations

e For any o-algebra H and any k > 1, we denote by LO(R*, ) the
set of -measurable and R¥-valued random variables.

o Let h: Q x R¥ — R. The effective domain of h(w,-) is
dom h(w,-) = {z € R¥ h(w,x) < co}.

@ h(w,-) is proper if dom h(w,-) # 0 and h(w,z) > —oo for all
r € RE,
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@ Consider two complete sub-o-algebras of Fr : H C F and two non
negative random variables y € L°(R,H) and Y € L°(R, F).

@ Let g: QxR — R. The set P(g) of super-hedging prices of the contingent
claim g(Y') consists in the initial values of super-hedging strategies 0 :

Pg) ={z € L°(R,H),30 € L°(R,H), z +0(Y —y) > g(Y)as.}.

@ Bensaid, B., Lesne J.P., Pagés H. and J. Scheinkman (1992).
@ The infimum super-hedging cost of g(Y') is defined as

p(g) := essinfyP(g).

@ An infimum super-hedging cost is not necessarly a price!
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Conditionnal essential supremum

@ Let I' = (7;);er be a family of real-valued F-measurable random
variables. There exists a unique H-measurable random variable
v3 € L°(RU {oc}, H) denoted esssup,,I' which satisfies the
following properties :

©Q Foreveryiel, vy > i as.
Q If ¢ € L°(RU {oo}, H) satisfies ¢ > +; a.s. Vi € I, then ¢ > 3 a.s.

@ Barron, E.N, Cardaliaguet, P. and R. Jensen (2003), Kabanov Y.
and E. Lépinette (2013).

exeP(g) <= e °R,H)st.z—0y>g(Y)—0Y as.

P(g) = {ess supy (9(Y) —0Y) + 0y, 0 € LO(R,H)} + LO(Ry,H).
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Conditionnal support

o Let X ¢ LY(R%, F), conditional support of X with respect to H
supp » X (w) ﬂ {A CR? closed, P(X € A|H)(w)=1}.

@ supp 4 X Is

@ non-empty, closed-valued,
@ H-measurable : {w € Q, O Nsupp 4, X (w) # 0} € H, VO open set,
© graph-measurable random set : Graph(supp 5, X) € H ® B(R).

o Assume that dom supp , X = Q and let h: 2 x R? — R be a

H ® B(RY)-measurable function which is lower semi-continuous
(I.s.c.) in . Then,

esssupy h(X) = sup . h(z)a.s.
TESUpPPp 4

@ Recall that if h is H-normal integrand then h is H ® B(R®)-measurable
and is |.s.c. in . The converse holds true if H is complete for some
measure.
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@ Suppose that g is a H-normal integrand. Then
esssupy (g(Y) —0Y) = sup (g(z) —0z) = f"(—0) as.

z€suppy Y

where f* is the Fenchel-Legendre conjugate of f i.e.

ffwz) = sup(zz— fw,z))

2€R
flw,z) = —g(w,2) + dsupp,,v (W, 2),
where 6¢c(w,2z) =0 if z € C(w) and +oc else. f*(w,-) is proper,
convex and f* is a H-normal integrand. Moreover, we have that
p(g) = essinfy {esssupy (9(Y) —0Y)+0y, 6 € L°(R,H)}
—esssupy {0y — f*(0), 0 € L°(R,H)} =
= —sw {zy =72} =—"(y) as.

where f** is the Fenchel-Legendre biconjugate of f i.e.

f(w,z) =sup (zz — ff(w, 2)).

z€R
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@ The classical biduality result states that if the concave envelop
conv f is proper, then f** is also proper, convex and l.s.c. and

f* =conv f

conv h(z) = sup{u(x), u convex and u < h} h(x) = liminf,_, h(y).
@ Pennanen T. and Perkkio A-P (2017)

@ Suppose that g is a H-normal integrand and that there exists some
concave function ¢ such that g < ¢ on suppyY and ¢ < oo on
convsuppy, Y. Then,

p(g) = —conv f(y) = conc(g, suppy Y )(y) — dconvsupp,,v (¥) a.s.

where convsupp,, Y is the smallest convex set that contains supp,, Y
and the relative concave envelop is

conc(g, suppy Y)(z) = inf{v(z), v isconcaveand v(z) > g(z), Vz € suppy Y }.
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@ There is an immediate profit (IP) if p(0) < 0 with P(p(0) < 0) > 0,
On the contrary case, we say that the Absence of Immediate Profit
(AIP) condition holds if p(0) =0 a.s.

@ As p(0) = —dconvsupp,, v (¥) a.s. (AIP) holds true if and only if
y € convsuppy Y = [essinfy Y, esssupy Y] N R ass.

@ (AIP) condition holds true if and only if the infimum super-hedging
cost of some European call option is non-negative.

@ (AIP) holds true if and only P(0) N L°(R_, H) = {0}.

o If thereis an IP z € P(0) N LY(R_,H), with P(x < 0) > 0. Write
0 = —x + x and make the immediate profit —x while you get 0 at
time 1 from = € P(0).
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@ The No Arbitrage (NA) condition holds true if for 0 € L°(R, H),
(Y —y) > 0 a.s. implies that (Y — y) = 0 a.s. or equivalently
PO)NLO(R_, F) = {0} since

PO) = {0 —y)+et, 0 € L°(R,H), € € L°(Ry, F)}.

@ The (AIP) condition is striclty weaker than the (NA) one. It is clear
that (NA) implies (AIP). We now provide some examples where
(AIP) holds true and is strictly weaker than (NA).

Q If essinfyY =0 and esssup, Y = oo.
Q@ If there exists Q1,2 << P such that Y is a Q2-super martingale
and a @1-sub martingale. Using the FTAP, (NA) does not have to

hold true but (AIP) holds true. Indeed let Z1 = dQ1/dP. As
esssup,y Y > Y a.s. and esssup,, Y is H-measurable,

E(Z,Y|H)

esssupy Y >

(AIP)
(o] Je]
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@ Last example. Assume that Y = yZ where Z > 0 is such that
suppy Z = [0,1] a.s. (or suppy Z = [1,00) a.s.) and y > 0.
@ Then (AIP) holds true :

essinfyY = yessinfyZ =0 < y and esssupy Y = yesssupy Z =y > y.

@ Nevertheless, this kind of model does not admit a risk-neutral
probability measure and the (NA) condition does not hold true using
the FTAP.

@ Indeed, in the contrary case, there exists a p; > 0 with
1 = Ep(p1|H) such that Ep(p1Y|H) = y or equivalently
Ep(p1Z|H) = 1.

e We deduce that Ep(pi1(1 — Z)|H) = 0. Since Z <1 as.
p1(1 —Z) =0 a.s. hence Z = 1 which yields a contradiction.
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@ Suppose that (AIP) holds true, g is a H-normal integrand and there
exists some concave function ¢ such that g < ¢ on suppy Y and
¢ < 0o on convsuppy Y. Then,

p(g) = vconc(g,suppyY)(y)
= inf{ay+ 5, a, BER, ar+ > g(x), Vx € suppy Y}
@ Beiglbock, M. and M. Nutz (2014)
@ If g is concave and u.s.c., we get under (AIP) that p(g) = g(y) a.s.
e If g is convex and lim, .. 27 1g(z) = M € R, the relative concave
envelop of ¢ is the affine function that coincides with g on the
extreme points of the interval convsupp,, Y i.e. as.

p(g) = 6y+ 5" =g(essinfyY) + 6% (y —essinfyY),

0 — g(esssupyY) — g(essinfyY)

esssupy Y —essinfyY

0 _
0

~ M if essinfy Y < esssupy Y = 400 a.s.
@ Here p(g) +0*(Y —y) > g a.s. and p(g) € P(9g).

with the conventions 8* =
g* — 9(=) _

0 if esssupy Y = essinfyY a.s. and
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@ For every t € {0,...,T} the set of all claims that can be
super-replicated from 0 initial endowment at time ¢ is

T
RI .= { D Oy 1ASy —€f, 01 € LR, Fun), €5 € LO(R+,]:T)}.

u=t+1

o Let gr € L°(R, Fr), then

Urr(gr) = A{gr}and mr,0(97r) = gr
r(gr) = {x€L°(R,F),3IReER!, xt+R=gr as.}
me,r(gr) = essinfr I r(g7).

@ Again, the infimum super-hedging cost is not necessarily a price as
7. 7(97) ¢ Wi r(gr) when 11, 7 (gr) is not closed.
e Note that for all t € {0,...,T — 1}

I 7(gr) = {x¢, 30, Ipts1 € Peg1,7(g97), Tt + 0:ASi+1 > peg1 a.s.}.
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e Local version of super-hedging prices. Let g;11 € LO(R, F;11),

Priti(ger1) = {2 € L°(R,F1),30: € L°(R, Fy), x4 + 0:ASi1 > gis1 a.8. )

T¢,t41 (9t+1) = essinfr, Ps 41 (gt+1 )

o Let gr € L°(R, Fr) and t € {0,...,T — 1}.

e Then P, r(91) C Ptt41(me41,7(97)).

o If my117(97) € Wyr1,7(97), then Py r(97) = Pry1(mev1,7(97))
and 7Tt7T(gT) = 7Tt,t+1(7ft+1,T(gT))-

e DPP. Under (AIP), if at each step, w11, 7(97) € g1 7(97) and if
Ti41,7(97) = gt+1(St41) for some “nice” Fi-normal integrand g, 1,
we will get that 7y 7(g7) = €ONC(ge+1,5uppr, Si+1)(Se) a.s.

Multi-period super-hedging prices
[ ]
Multi-period (AIP)

Multi-period (AIP) |

e Fixt € {0,...,T}. (AIP) condition holds at time t if there is no
global IP at ¢, i.e. if II; 7(0) N L°(R_, F;) = {0}.

@ We say that (ALIP) condition holds at time ¢ if there is no local IP
at ¢, i.e. if Ppyy1(0)NLO(R_, F,) = {O}.

@ Finally we say that the (AIP) condition holds true if the (AIP)
condition holds at time ¢ for all t € {0,...,T}.

o AsIl; 7(0) = (-RI) N L°(R, F;), (AIP) reads as
RINLO(Ry, F) = {0}, forall t € {0,...,T}.

e Equivalence between (ALIP) at time ¢ and (AIP) at time ¢.

@ (AIP) holds if and only if one of the the following assertions holds :

Q S: € convsuppy, Si+1 a.s., forall t € {0,...,T — 1}.
Q essinfr, Si11 <S¢ <esssupg, Siy1a.s., forall t € {0,..., T —1}.
Q@ m7r(0)=0 as. forallte{0,..., T —1}.
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@ The (NA) condition holds true if R N L°(R,, Fr) = {0} for all

te{0,...,T}.
@ The (AIP) condition holds true if R] N LY(R,, F;) = {0}, for all
te{0,...,T}.

@ The absence of weak immediate profit (AWIP) condition holds true
if R N LO(R,,F,) = {0} for all t € {0,..., T}, where the closure
of R is taken with respect to the convergence in probability.

@ The following statements are equivalent :

© (AWIP) holds.

@ For every t € {0,...,T}, there exists ) << P with
E(dQ/dP|F:) = 1 such that (Su)ueqe,..., 7y is @ Q-martingale.

© (AIP) holds and R7 N L°(R, F;) = RI N LY(R, F,) for every
te{0,...,T}.
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Multi-period (AIP), (NA) and (AWIP) Il

@ Suppose that P(essinfr, Si11 = S;) = P(esssupz, Sip1 = S¢) =0
forallt € {0...,T — 1}. Then, (AWIP) is equivalent to (AlIP) and,
under these equivalent conditions, RIT is closed in probability for
every t € {0...,T — 1}.The infimum super-hedging cost is a
super-hedging price.

@ The (AIP) condition is not necessarily equivalent to (AWIP).
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Explicit Dynamic programming under (AlP)

Suppose that the model is defined by essinfr,_ S; = k¢ ;S; 1 and
esssupy, Sy = ki 1Si—1 where k§,--- ,k%_, and kY, --- KY%_, are
deterministic non negative numbers. Then :
e The (AIP) condition holds true if and only if k¢ € [0, 1] and
ki € [1,+o00] forall 0 <t <T —1.
@ Suppose (AIP). If h: R — R is a non-negative convex function with

Domh = R such that lim, _, o hgz) € [0,00), then
7Tt7T(h) = h(t, St) c PtyT(h(ST)) a.s. where

h(T,z) = h(z)
ht—1,2) = N_1h(tk2) + (1= XNo1)h (8K 7)),
where \;_; = kf?’flk_j e [0, 1].

@ The infimum super-hedging cost of h(St) is the binomial price when
S; € {kg_l,tst_l,kf_17t5t_1} as.,t=1,.-- ,T.

e Carassus, L., Gobet, E. and E. Temam (06) and Carassus L. and T,
Vargiolu.
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@ Study the asymptotic behaviour of the super-hedging costs when the
number of discrete dates converges to oco.

@ Use the discretization tI = (1/n)i, i € {0,1,--- ,n} and assume
that ki =140 /At and k%L_l =1—on /ALY >0 where
t — oy is a positive Lipschitz-continuous function on [0, T7].

@ The assumptions on the multipliers kfn_l and kfn_l imply that

Sin
i1 /
|S—t? — 1‘ < O't;”b At?’_}_1, a.s.
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e For every n > 1, we get a function h", s.t. (T, z) = (x — K)4 and

WU L z) = )\t?_lh"(t?, k%llx) + (1 — )\t?_l)h"(t?, kf?ilx).
kgn - 1 1
)\ n €T = Ut —- —.
w0 g

e Extend h™ on [0,7] in such a way that A" is constant on each
interval [t7, ¢} [, i € {0,--- ,n}.

@ Such a scheme is proposed by Milstein, G.N. (2002). The sequence
of functions (h"(t,x)),, converges uniformly to h(t,x), solution to
the diffusion equation :

2
Ouh(t, ) + o—f%amh(t, 2) =0, h(T,z)=(z—K),.
e Baptiste J. and E. Lépinette (2018) for payoff function not smooth

provided that the successive derivatives of the P.D.E.’s solution do
not explode too much.

DPP, numerical results
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o If At? is closed to 0, the observed prices of the Call option are
assumed to be given by the solution h(t,S;) of the diffusion
equation.

@ By calibration, deduce an evaluation of the the deterministic
function t — o, and test

Sin
|% — 1‘ <oy ALY, as. (1)
t7

@ The data set is composed of historical values of the french index
CAC 40 from the 23rd of October 2017 to the 19th of January 2018.
For several strikes, we compute the proportion of observations
satisfying (1).
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Prices

Figure : Distribution of the observed prices.
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Figure : Ratio of observations satisfying (1) as a function of the strike.
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@ Test the infimum super-hedging cost on some data set composed of
historical daily closing values of the french index CAC 40 from the
5th of January 2015 to the 12th of March 2018.

@ The interval [0,T] corresponds to one week composed of 5 days so
that the discrete dates are ¢;, i € {0,--- ,4}.

Sy
O¢, — Inax (‘% — 1‘/\/ Atz’—i—h) (NS {07 73}7
t;

where max is the empirical maximum taken over a one year sliding
sample window of 52 weeks.

(*] kzl; :1+0—ti\/Ati—|—l and ]{?gl :1_O-ti\/Ati+1-

e Estimation does not depend on the strike as before.

e Estimate the volatility on 52 weeks and implement our hedging
strategy on the fifty third one.

@ Repeat the procedure by sliding the window of one week, i.e. on

each of the weeks from the 11th of January 2015 to the 5th of
March 2018.
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@ We study below the super-hedging error

3
er = h(0,S0) + Z 9:§A8t§+1 — (St — K)+
1=0
@ Case K = 4700. The empirical average of 7 is 12.63 and its

standard deviation is 21.65 (empirical mean of Sy = 4044). The
empirical probability of {e7 < 0} is equal to 15.18% but the Value
at Risk at 95 % is —10.33 which confirms that our strategy is
conservative.

AR L2MAKNALSY OV URNRANILIUBERE

Figure : Distribution of the super-hedging error e for K = 4700.
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@ The empirical average of V{)/Sy is 5.63% and its standard deviation
is 5.14%.

6
ST 1 1
000% 200% 400% 600% 800% 1000% 1200% 1400% 1

Yo 6,00%

Figure : Distribution of the ratio V4 /So.
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@ New approach to the superreplication price, based on convex duality.
@ (AIP) condition instead of (NA) condition.

@ Extend the Binomial model to a more general one where the prices
at the next instant may take an infinite number of values : For
convex payoffs, the prices are the same than the one of the Binomial
model keeping only the conditional essup and essinf under the weak
(AIP) condition.

e Confirmed by real data.

@ The implementation of the super-hedging strategy is very simple and
efficient on real data.
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Let X : Q — R? r.v, P a set of probability on (2, F).

@ The robust support is defined as

supp pX = [ |{F CR?, closed, P(X € F) =1, VP € P}.

@ supp pX is a closed set, supp pX = {z,, n € N} and
X(-) € supp pX P—q.s.
Let X = (X;);cr be a family of random variables X; : 2 — R and P
a set of probability defined on (92, F).
@ Then, there exists an unique number z € RU {oco} denoted by
esssupp X which satisfies the following properties :
©Q Foreveryiel, x> X;(-) P-qs.
@ If for some number y, y > X,() P-q.s. Vi € I, then y > x.
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Robust extension |

@ Leth : R—RT bels.c. Then

esssupph(X) = sup Xh(ﬂﬁ) = sup h(z,),
TESUpPP p n

@ Super-hedging prices of g(Y) :
Plg) = {xeR,IVeR, 2+0(Y —y)>g(Y)Pqs.}
= {esssupp (g(Y) —0Y) + 0y, 6 € R} + R

@ Super-hedging cost of g(Y) p(g) := essinfpP(g).
@ Suppose that g is Isc. Then
esssupp (g(Y) —0Y) = sup (g9(z) —0z) = f*(—0),

z€supppY

where f* is the Fenchel-Legendre conjugate of
[ =—=9(2) + dsupp,ry (2) ie. f*(x) =sup,cg (z2 — f(2)).
e Moreover, p(g) = —f**(y).




	Aim
	Aim of the paper
	References

	The one-period framework
	Framework and notations
	Conditionnal support and conditionnal essential supremum
	First results

	(AIP)
	Definition
	Comparison

	Multi-period super-hedging prices
	Multi-period super-hedging prices
	Multi-period (AIP)
	Multi-period (AIP), (NA) and (AWIP)

	DPP, numerical results
	Explicit Dynamic programming
	Asymptotic behaviour
	Numerical experiments

	Conclusion
	Robust extension
	Robust support and essential supremum
	Robust super-hedging cost


